Technical Assistance Guide
No. 01-13

Calculating Daily Morphine Milligram Equivalents

Revised November 2017

This project was supported by Grant No. 2010-DG-BX-K088 awarded by the Bureau of Justice Assistance. The Bureau of Justice Assistance is a component of the Office of Justice Programs, which also includes the Bureau of Justice Statistics, the National Institute of Justice, the Office of Juvenile Justice and Delinquency Prevention, and the Office for Victims of Crime. Points of view or opinions in this document are those of the author and do not represent the official position or policies of the U.S. Department of Justice.
Introduction

States that receive funding under the Harold Rogers Prescription Drug Monitoring Program are required to report data that measures the results of their work. These performance measures are reported every three months to the Bureau of Justice Assistance (BJA) through BJA's online Performance Measurement Tool (PMT). The measures were designed to document various performance metrics including: number of prescribers/dispensers registered to use the PDMP, number of trainings conducted with various groups, number of solicited and unsolicited reports sent to different authorized users, the number of individuals meeting thresholds associated with potential doctor shopping, and the number of prescriptions they have obtained.

Included in the performance measurements is a calculation of daily morphine milligram equivalents (MMEs) for opioid painkillers for three (3) month and six (6) month reporting periods. BJA has moved to MME reporting to better identify and quantify at-risk individuals.

To assist PDMPs in fulfilling this grant requirement, ensure consistency in the values reported, and provide a better assessment of the drug problem, the PDMP Training and Technical Assistance Center (TTAC) partnered with Len Paulozzi, MD, MPH, from the Centers for Disease Control and Prevention (CDC), to develop this technical assistance guide (TAG).

Value of using MMEs

Morphine is widely regarded as the ‘gold standard’ for the treatment and management of moderate to severe pain and, therefore, is used as the reference point for other opioids. As you know, there has been an increase in the abuse of prescription opioids and in overdose deaths involving these medications. Studies have shown that opioid usage for more than three (3) months can lead to tolerance and dependence resulting in higher dosages being prescribed to the patient. As dosage increases, the likelihood of an adverse reaction increases. Evidence suggests that a patient, receiving more than 100mg MMEs, is nine (9) times more likely to overdose with 12% of those resulting in death. Identifying at-risk patients is a crucial first step towards improving patient safety and increasing
prescriber awareness. The MME measurements will assist states, BJA, and other stakeholders in determining the seriousness of the problem and assist in efforts to address the overdoses and deaths from opioid medications.

The responses to the MME questions should be reported as whole numbers and is the number of individuals receiving more than 100mg MMEs per day; not the number of prescriptions. The MME can be from a single prescription or when there is overlap between prescriptions for the same individual. Make sure that each individual is only counted once for each three month or six month reporting period; some patients may meet the MME threshold more than once during each time period.

NOTE: Opioid dosage thresholds are based on overdose risk when opioids are prescribed for pain and should not guide dosing of Medication Assisted Treatment (MAT) for opioid use disorders.

CDC MME Calculator App

The CDC has developed and made available an Opioid Guideline App. It is designed to help providers apply the recommendations of CDC’s Guidelines for Prescribing Opioids for Chronic Pain into clinical practice by putting the entire guideline, tools, and resources in the palm of their hand. The CDC app includes a MME calculator, summaries of key recommendations, a link to the full Guideline, and an interactive motivational interviewing feature to help providers practice effective communications skills and prescribe with confidence.

[CDC WEBSITE](#) [CDC OPIOID APP (Android)](#) [CDC OPIOID APP (iOS devices)](#)
Technical Assistance Guide (TAG)

The TTAC strongly recommends that PDMP Administrators provide the information, presented in the TAG, to their vendor or IT programmer to enable accurate computing of MMEs for large PDMP data sets.

The TAG includes the following:

- Definitions
- MME Conversion Formula
- Oral MMEs – Excel Data File
- SAS Merging Program
- Oral MMEs – SAS Data File [SAS7BDAT – 6 MB]

Definitions:
The following are terms as used in the BJA reportable performance measurements for MMEs.

a. **Adult** – patients that are 18 years of age or older as of the date the prescription was filled

b. **Youth** – patients that are under 18 years of age as of the date the prescription was filled

c. **Three month reporting period** – the initial reporting period is October 1, 2012 through December 31, 2012 (inclusive) and successive quarterly reporting periods:
 - January 1, 2013 through March 31, 2013
 - April 1, 2013 through June 30, 2013
 - July 1, 2013 through September 30, 2013

d. **Six month reporting period** – the three months or quarterly reporting period as described in c. (above), plus the three months of the quarter immediately preceding the reporting period (i.e., data from the 1st quarter plus data from the 2nd quarter).

e. **Conversion Reference Table** - The CDC developed this table and it contains the MME conversion factor for opioid medications,
organized by the National Drug Code (NDC). The table contains all the fields necessary to compute the MMEs. The table may be used by a vendor or the IT staff to build a separate program to convert prescription data to MMEs.

NOTE: The Conversion Reference Table contains NDCs that are eleven digits; the length of the NDC stored in the PDMP needs to be verified. A leading ‘0’ in the Conversion Reference Table may need to be removed to match properly with a PDMP’s NDC file.

f. Statistical Analysis System (SAS) programs, developed by the CDC, is a ready program which can be used by a vendor or IT staff to convert prescription data to MMEs, if it is decided not to build a separate one. The SAS programs combine the MME conversion factors by NDC numbers with the information collected from the PDMP prescription data to automatically calculate the MMEs. The SAS programs may need to be customized to properly work with a PDMP’s data fields; it is recommended that the SAS code be modified by an experienced IT programmer.

MME Conversion Formula:

\[
\frac{(\text{Drug Strength}) \times (\text{Drug Quantity}) \times (\text{MME Conversion Factor})}{(\text{Days Supply})}
\]

Drug Strength: located in the Conversion Reference Table for each NDC number

Drug Quantity: located in the PDMP prescription record

MME Conversion Factor: located in the Conversion Reference Table for each NDC number

Days Supply: located in the PDMP prescription record

EXCEPTIONS: Fentanyl and Buprenorphine patches are two (2) important exceptions to using the above formula to compute MMEs and are built into the
SAS code. The exception only applies to the Fentanyl and Buprenorphine patches; **not** the other dosage forms of either medication.

Typically, patients will be prescribed a Fentanyl or Buprenorphine patch for use every three (3) or seven (7) days, respectively. However, the timeframe for a patch may vary depending upon the doctor’s instructions. Therefore, even though the duration of use of each patch may be prescribed for less than the typical number of days, the quantity of medication a patient receives each day remains constant.

EXAMPLE: 10 Fentanyl patches are typically prescribed for thirty (30) days (the Days Supply field in the PDMP data is equal to 30). However, some prescriptions might specify ten (10) patches over twenty (20) days.

Consequently, a standard has been established to account for possible variances in the length of time a patch is worn. The standard is based on the length of time a patient would normally be using the patch: three (3) days for Fentanyl and seven (7) days for Buprenorphine. In order for the formula to work properly and compute the MME accurately, the Days Supply value should be changed to equal three (3) times the quantity for Fentanyl patches and seven (7) times the quantity for Buprenorphine patches; regardless of the Days Supply value written on the prescription.

EXAMPLE: 10 Fentanyl patches are prescribed for twenty (20) days. Since a Fentanyl patch is typically used for three (3) days, the ‘Days Supply’ value should be thirty (30) for computing the MME.

External Files (click file name to download):

- Oral MMEs – Excel Data File
- SAS Merging Program
- Orals MMEs – SAS Data File [SAS7BDAT – 6 MB]
Frequently Asked Questions (FAQs)

1. What changed for buprenorphine in the 2017 CDC MME file?
 In the 2016 version of the CDC MME file, the conversion factor for sublingual buprenorphine products increased threefold based on our comprehensive review of the literature. The file also contained guidance on how to distinguish products indicated for pain from those indicated for the treatment of opioid use disorder (OUD). The 2017 version removed conversion factors for all buprenorphine products, regardless of indication, but kept guidance on distinguishing the two product types.

2. Why were conversion factors for all buprenorphine products removed?
 Removing conversion factors for buprenorphine was intentional. The conversion factors in the CDC MME file were originally intended for retrospective research and analytic purposes, NOT for clinical decision-making (in contrast to the conversion factors provided with the 2016 CDC Guideline for Prescribing Opioids for Chronic Pain.) However, we have learned that these conversion factors are being used clinically despite our warnings. The buprenorphine dosage to treat pain versus OUD is markedly different, and incorrect use of the MME file conversion factors for buprenorphine could potentially lead to dangerous patient outcomes. As a partial opioid agonist, buprenorphine may not act in the same dose-dependent manner as full agonists and there are data indicating this is true for respiratory depression at certain dosage levels. More research is needed on buprenorphine’s morphine equivalence.

3. Am I required to incorporate the 2017 changes to the CDC MME file in my research or program?
 As an organization or individual utilizing the CDC MME file, you must consider your own research or programmatic needs. It may be that you use the file exclusively for research with no clinical implications. Moving forward, it is preferred (although certainly not required) that conversion factors for buprenorphine are removed until more research is available on buprenorphine’s dosage equivalency and association with overdose risk. You or your organization must decide whether, how, or when it makes sense for you to incorporate the change for buprenorphine in the 2017 CDC MME file.
4. Can I use what was in the 2016 version of the CDC MME file?
 It is up to you to decide whether to continue using conversion factors for buprenorphine contained in the 2016 version of the MME file. Also, it is still possible to distinguish buprenorphine indicated for pain if you choose to include these prescriptions in calculating prescribing rates, for example, or to distinguish buprenorphine indicated for OUD if you are identifying patients on such treatment.

5. I am a CDC-funded grantee. How should I incorporate this change into my required indicators?
 CDC is working on guidance to provide our funded grantees who use the MME file.